∭Vf(∇⋅A)dV=?Integration by parts is derived from the product rule for derivatives:
dxd(fg)=f(dxdg)+g(dxdf)⇔∫dxd(fg)dx=∫f(dxdg)dx+∫g(dxdf)dx⇔∫f(dxdg)dx=∫dxd(fg)dx−∫g(dxdf)dx=fg−∫g(dxdf)dx.We can do the similar to multivariables. Let f be a scalar field, and A be a vector field,
∇⋅(fA)=(∂x∂fAx+f∂x∂Ax)+(∂y∂fAy+f∂y∂Ay)+(∂z∂fAz+f∂z∂Az)=∇f⋅A+f(∇⋅A).Integrate both sides over a volume V and use the divergence theorem, we get
∬∂VfA⋅dS=∭V∇⋅(fA)dV=∭V∇f⋅AdV+∭Vf(∇⋅A)dV⇔∭Vf(∇⋅A)dV=∬∂VfA⋅dS−∭V∇f⋅AdV.
∬Sf(∇×A)dS=?Using the product rule (I skip the proccess here), we can show that
∇×(fA)=(∇f×A)+f(∇×A).Again, integrate both sides over a surface S and use Stokes’ Theorem to get
∮∂SfA⋅dl⇔=∬S∇×(fA)⋅dS=∬S(∇f×A)⋅dS+∬Sf(∇×A)⋅dS∬Sf(∇×A)⋅dS=∮∂SfA⋅dl−∬S(∇f×A)⋅dS.Use the property of cross product, a×b=−b×a to cancel the minus sign:
−∬S(∇f×A)⋅dS=∬S(A×∇f)⋅dS.We get
∬Sf(∇×A)⋅dS=∮∂SfA⋅dl+∬S(A×∇f)⋅dS.
∭VB⋅(∇×A)dV=?Using the product rule (I skip the proccess here), we can show that
∇⋅(A×B)=B⋅(∇×A)−A⋅(∇×B).Integrate both sides over a volume V and use the divergence theorem to get
∬∂V(A×B)⋅dS=∭V∇⋅(A×B)dV=∭VB⋅(∇×A)dV−∭VA⋅(∇×B)dV⇔∭VB⋅(∇×A)dV=∬∂V(A×B)⋅dS+∭VA⋅(∇×B)dV.