Post

Integration By Parts 3D

Vf(A)dV=?\iiint_V f \left(\nabla \cdot \vec A\right) dV = ?

Integration by parts is derived from the product rule for derivatives:

ddx(fg)=f(dgdx)+g(dfdx)ddx(fg)dx=f(dgdx)dx+g(dfdx)dxf(dgdx)dx=ddx(fg)dxg(dfdx)dx=fgg(dfdx)dx.\begin{align*} &\frac{d}{dx} (fg) = f \left(\frac{dg}{dx} \right) + g \left(\frac{df}{dx} \right) \\ &\Leftrightarrow \int \frac{d}{dx} (fg) dx = \int f \left(\frac{dg}{dx} \right) dx + \int g \left(\frac{df}{dx} \right) dx \\ &\Leftrightarrow \int f \left(\frac{dg}{dx} \right) dx = \int \frac{d}{dx} (fg) dx - \int g \left(\frac{df}{dx} \right) dx = fg - \int g \left(\frac{df}{dx} \right) dx. \end{align*}

We can do the similar to multivariables. Let ff be a scalar field, and A\vec A be a vector field,

(fA)=(fxAx+fAxx)+(fyAy+fAyy)+(fzAz+fAzz)=fA+f(A).\begin{align*} \nabla \cdot (f \vec A) &= \left(\frac{\partial f}{\partial x} A_x + f \frac{\partial A_x}{\partial x}\right) + \left(\frac{\partial f}{\partial y} A_y + f \frac{\partial A_y}{\partial y}\right) + \left(\frac{\partial f}{\partial z} A_z + f \frac{\partial A_z}{\partial z}\right)\\ &= \nabla f \cdot \vec A + f \left(\nabla \cdot \vec A\right). \end{align*}

Integrate both sides over a volume VV and use the divergence theorem, we get

VfAdS=V(fA)dV=VfAdV+Vf(A)dVVf(A)dV=VfAdSVfAdV.\begin{align*} &\oiint_{\partial V} f \vec A \cdot d \vec S = \iiint_V \nabla \cdot (f \vec A) dV = \iiint_V \nabla f \cdot \vec A dV + \iiint_V f \left(\nabla \cdot \vec A\right) dV\\ &\Leftrightarrow \boxed{\iiint_V f \left(\nabla \cdot \vec A\right) dV = \oiint_{\partial V} f \vec A \cdot d \vec S - \iiint_V \nabla f \cdot \vec A dV.} \end{align*}
Sf(×A)dS=?\iint_S f (\nabla \times \vec A) d\vec S = ?

Using the product rule (I skip the proccess here), we can show that

×(fA)=(f×A)+f(×A).\nabla \times (f \vec A) = (\nabla f \times \vec A) + f(\nabla \times \vec A).

Again, integrate both sides over a surface SS and use Stokes’ Theorem to get

SfAdl=S×(fA)dS=S(f×A)dS+Sf(×A)dSSf(×A)dS=SfAdlS(f×A)dS.\begin{align*} \oint_{\partial S} f \vec A \cdot d\vec l &= \iint_S \nabla \times (f \vec A) \cdot d\vec S \\ &= \iint_S (\nabla f \times \vec A) \cdot d\vec S + \iint_S f (\nabla \times \vec A) \cdot d\vec S \\ \Leftrightarrow &\iint_S f (\nabla \times \vec A) \cdot d\vec S = \oint_{\partial S} f \vec A \cdot d\vec l - \iint_S (\nabla f \times \vec A) \cdot d\vec S. \end{align*}

Use the property of cross product, a×b=b×a\vec a \times \vec b = - \vec b \times \vec a to cancel the minus sign:

S(f×A)dS=S(A×f)dS.- \iint_S (\nabla f \times \vec A) \cdot d\vec S = \iint_S (\vec A \times \nabla f) \cdot d\vec S.

We get

Sf(×A)dS=SfAdl+S(A×f)dS.\boxed{ \iint_S f (\nabla \times \vec A) \cdot d\vec S = \oint_{\partial S} f \vec A \cdot d\vec l + \iint_S (\vec A \times \nabla f) \cdot d\vec S.}
VB(×A)dV=?\iiint_V \vec B \cdot (\nabla \times \vec A) dV = ?

Using the product rule (I skip the proccess here), we can show that

(A×B)=B(×A)A(×B).\nabla \cdot (\vec A \times \vec B) = \vec B \cdot (\nabla \times \vec A) - \vec A \cdot (\nabla \times \vec B).

Integrate both sides over a volume VV and use the divergence theorem to get

V(A×B)dS=V(A×B)dV=VB(×A)dVVA(×B)dVVB(×A)dV=V(A×B)dS+VA(×B)dV.\begin{align*} \oiint_{\partial V} (\vec A \times \vec B) \cdot d \vec S &= \iiint_V \nabla \cdot (\vec A \times \vec B) dV\\ &=\iiint_V B \cdot (\nabla \times \vec A) dV - \iiint_V A \cdot (\nabla \times \vec B) dV\\ \end{align*}\\ \Leftrightarrow \boxed{\iiint_V B \cdot (\nabla \times \vec A) dV = \oiint_{\partial V} (\vec A \times \vec B) \cdot d \vec S + \iiint_V A \cdot (\nabla \times \vec B) dV.}
This post is licensed under CC BY 4.0 by the author.