Post

The laplacian of 1 / |r - r'|

I want to know

2(1rr)=((1rr)).\nabla^2 (\frac{1}{|\vec r - \vec r'|}) = \nabla \cdot \left( \nabla (\frac{1}{|\vec r - \vec r'|}) \right).

Method 1 — Cartesian Coordinates

Let’s first look at (1rr)\nabla (\frac{1}{|\vec r - \vec r'|}). Let

rr=(xx)2+(yy)2+(zz)2,|\vec r - \vec r'| = \sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2},

and so

x(1rr)=xxrr3,y(1rr)=yyrr3,z(1rr)=zzrr3.\frac{\partial}{\partial x}\left( \frac{1}{|\vec r - \vec r'|}\right) = \frac{x'-x}{|\vec r - \vec r'|^3}, \\ \frac{\partial}{\partial y}\left( \frac{1}{|\vec r - \vec r'|}\right) = \frac{y'-y}{|\vec r - \vec r'|^3}, \\ \frac{\partial}{\partial z}\left( \frac{1}{|\vec r - \vec r'|}\right) = \frac{z'-z}{|\vec r - \vec r'|^3}.

Thus,

(1rr)=(xx)ı^+(yy)ȷ^+(zz)k^rr3=rrrr3.\nabla (\frac{1}{|\vec r - \vec r'|}) = \frac{(x'-x)\ihat+(y'-y)\jhat+(z'-z)\khat}{|\vec r - \vec r'|^3} = \frac{\vec r' - \vec r}{|\vec r - \vec r'|^3}.

Then, we want 2(1rr)=(rrrr3).\nabla^2 (\frac{1}{|\vec r - \vec r'|}) = \nabla \cdot \left( \frac{\vec r' - \vec r}{|\vec r - \vec r'|^3} \right). Notice that (after verbose but straightforward calculation),

xxxrr3=rr3+3rr(xx)2rr6,yyyrr3=rr3+3rr(yy)2rr6,zzzrr3=rr3+3rr(zz)2rr6.\frac{\partial}{\partial x} \frac{x'-x}{|\vec r - \vec r'|^3} = \frac{-|\vec r - \vec r'|^3 + 3|\vec r - \vec r'|(x'-x)^2}{|\vec r - \vec r'|^6},\\ \frac{\partial}{\partial y} \frac{y'-y}{|\vec r - \vec r'|^3} = \frac{-|\vec r - \vec r'|^3 + 3|\vec r - \vec r'|(y'-y)^2}{|\vec r - \vec r'|^6},\\ \frac{\partial}{\partial z} \frac{z'-z}{|\vec r - \vec r'|^3} = \frac{-|\vec r - \vec r'|^3 + 3|\vec r - \vec r'|(z'-z)^2}{|\vec r - \vec r'|^6}.

The divergence is to adding them up, which is

rr3+3rr((xx)2+(yy)2+(zz)2)rr6=rr3+3rrrr2rr6=rr3+3rr3rr6=0.(For rr0)\begin{align*} &\frac{-|\vec r - \vec r'|^3 + 3|\vec r - \vec r'|\left((x'-x)^2+(y'-y)^2+(z'-z)^2\right)}{|\vec r - \vec r'|^6} \\ &= \frac{-|\vec r - \vec r'|^3 + 3|\vec r - \vec r'|\cdot |\vec r - \vec r'|^2}{|\vec r - \vec r'|^6}\\ &= \frac{-|\vec r - \vec r'|^3 + 3|\vec r - \vec r'|^3}{|\vec r - \vec r'|^6} \\ &= 0. \quad \text{(For $|\vec r - \vec r'| \neq 0$)} \end{align*}

We thus get for rr0,|\vec r - \vec r'| \neq 0,

2(1rr)=0.\nabla^2 (\frac{1}{|\vec r - \vec r'|}) = 0.

Method 2 — Spherical Coordinates

It is best to calculate this in spherical coordinate system. Here’s the result for the laplacian operator in spherical coordinate system.

2=1r2r(r2r)+1r2sinθθ(sinθθ)+1r2sin2θ2ϕ2.\nabla^2 = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2 \frac{\partial}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta \frac{\partial}{\partial \theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial \phi^2}.

Our function has nothing to do with θ\theta and ϕ\phi, so it simplifies to

21r=1r2r(r2r(1r))=0.\nabla^2 \frac{1}{|\vec r|} = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2 \frac{\partial}{\partial r}\left(\frac{1}{r}\right)\right) = 0.

You just offset the thing and get the form in rr\vec r - \vec r'.

What Happens At The Origin?

Because the divergence is zero everywhere except origin, by a consequence of Divergence Theorem, any shape around the origin will have the same flux. Let’s just pick VV to be an unit sphere for simplicity.

Srr3dA=SdA=4π=V(rr3)dV    (rr3)=4πδ3(r).\oiint_{\partial S} \frac{\vec r}{|\vec r|^3}\cdot d\vec A = \oiint_{\partial S} dA = 4\pi \\ = \iiint_V \nabla\cdot\left(\frac{\vec r}{|\vec r|^3}\right)\,dV \implies \nabla\cdot\left(\frac{\vec r}{|\vec r|^3}\right) = 4\pi\,\delta^3(\vec r).

Thus we conclude

21r=4πδ3(r),\nabla^2 \frac{1}{|\vec r|} = -4\pi\,\delta^3(\vec r),

And the offset version

21rr=4πδ3(rr).\nabla^2 \frac{1}{|\vec r - \vec r'|} = -4\pi\,\delta^3(\vec r - \vec r').
TikZ SVG
This post is licensed under CC BY 4.0 by the author.